Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(3): e0011024, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38364100

RESUMO

Prolonged infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in immunocompromised patients provides an opportunity for viral evolution, potentially leading to the generation of new pathogenic variants. To investigate the pathways of viral evolution, we carried out a study on five patients experiencing prolonged SARS-CoV-2 infection (quantitative polymerase chain reaction-positive for 79-203 days) who were immunocompromised due to treatment for lymphoma or solid organ transplantation. For each timepoint analyzed, we generated at least two independent viral genome sequences to assess the heterogeneity and control for sequencing error. Four of the five patients likely had prolonged infection; the fifth apparently experienced a reinfection. The rates of accumulation of substitutions in the viral genome per day were higher in hospitalized patients with prolonged infection than those estimated for the community background. The spike coding region accumulated a significantly greater number of unique mutations than other viral coding regions, and the mutation density was higher. Two patients were treated with monoclonal antibodies (bebtelovimab and sotrovimab); by the next sampled timepoint, each virus population showed substitutions associated with monoclonal antibody resistance as the dominant forms (spike K444N and spike E340D). All patients received remdesivir, but remdesivir-resistant substitutions were not detected. These data thus help elucidate the trends of emergence, evolution, and selection of mutational variants within long-term infected immunocompromised individuals. IMPORTANCE: SARS-CoV-2 is responsible for a global pandemic, driven in part by the emergence of new viral variants. Where do these new variants come from? One model is that long-term viral persistence in infected individuals allows for viral evolution in response to host pressures, resulting in viruses more likely to replicate efficiently in humans. In this study, we characterize replication in several hospitalized and long-term infected individuals, documenting efficient pathways of viral evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Genoma Viral , Hospedeiro Imunocomprometido
2.
Clin Infect Dis ; 75(7): 1217-1223, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35100614

RESUMO

BACKGROUND: Multidrug-resistant organisms (MDROs) frequently contaminate hospital environments. We performed a multicenter, cluster-randomized, crossover trial of 2 methods for monitoring of terminal cleaning effectiveness. METHODS: Six intensive care units (ICUs) at 3 medical centers received both interventions sequentially, in randomized order. Ten surfaces were surveyed each in 5 rooms weekly, after terminal cleaning, with adenosine triphosphate (ATP) monitoring or an ultraviolet fluorescent marker (UV/F). Results were delivered to environmental services staff in real time with failing surfaces recleaned. We measured monthly rates of MDRO infection or colonization, including methicillin-resistant Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus, and MDR gram-negative bacilli (MDR-GNB) during a 12-month baseline period and sequential 6-month intervention periods, separated by a 2-month washout. Primary analysis compared only the randomized intervention periods, whereas secondary analysis included the baseline. RESULTS: The ATP method was associated with a reduction in incidence rate of MDRO infection or colonization compared with the UV/F period (incidence rate ratio [IRR] 0.876; 95% confidence interval [CI], 0.807-0.951; P = .002). Including the baseline period, the ATP method was associated with reduced infection with MDROs (IRR 0.924; 95% CI, 0.855-0.998; P = .04), and MDR-GNB infection or colonization (IRR 0.856; 95% CI, 0.825-0.887; P < .001). The UV/F intervention was not associated with a statistically significant impact on these outcomes. Room turnaround time increased by a median of 1 minute with the ATP intervention and 4.5 minutes with UV/F compared with baseline. CONCLUSIONS: Intensive monitoring of ICU terminal room cleaning with an ATP modality is associated with a reduction of MDRO infection and colonization.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Enterococos Resistentes à Vancomicina , Trifosfato de Adenosina , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Humanos , Unidades de Terapia Intensiva , Vancomicina
3.
Arthritis Rheumatol ; 73(9): 1703-1712, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33682371

RESUMO

OBJECTIVE: Little is known about temporal changes in nasal bacteria in granulomatosis with polyangiitis (GPA). This study was undertaken to examine longitudinal changes in the nasal microbiome in association with relapse in GPA patients. METHODS: Bacterial 16S ribosomal RNA gene sequencing was performed on nasal swabs from 19 patients with GPA who were followed up longitudinally for a total of 78 visits, including 9 patients who experienced a relapse and 10 patients who remained in remission. Relative abundance of bacteria and ratios between bacteria were examined. Generalized estimating equation models were used to evaluate the association between bacterial composition and 1) disease activity and 2) levels of antineutrophil cytoplasmic antibody (ANCA) with specificity for proteinase 3 (PR3), adjusted for medication. RESULTS: Corynebacterium and Staphylococcus were the most abundant bacterial genera across all nasal samples. Patients with quiescent disease maintained a stable ratio of Corynebacterium to Staphylococcus across visits. In contrast, in patients who experienced a relapse, a significantly lower ratio was observed at the visit prior to relapse, followed by a higher ratio at the time of relapse (adjusted P < 0.01). Species-level analysis identified an association between a higher abundance of nasal Corynebacterium tuberculostearicum and 1) relapse (adjusted P = 0.04) and 2) higher PR3-ANCA levels (adjusted P = 0.02). CONCLUSION: In GPA, significant changes occur in the nasal microbiome over time and are associated with disease activity. The occurrence of these changes months prior to the onset of relapse supports a pathogenic role of nasal bacteria in GPA. Our results uphold existing hypotheses implicating Staphylococcus as an instigator of disease and have generated a novel finding involving Corynebacterium as a potential mediator of disease in GPA.


Assuntos
Granulomatose com Poliangiite/microbiologia , Microbiota , Cavidade Nasal/microbiologia , Adulto , Corynebacterium/isolamento & purificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Staphylococcus/isolamento & purificação
4.
Open Forum Infect Dis ; 6(7): ofz252, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281857

RESUMO

BACKGROUND: We evaluated the differential impact of levofloxacin administered for the prophylaxis of bloodstream infections compared with broad-spectrum beta-lactam (BSBL) antibiotics used for the treatment of neutropenic fever on the gut microbiome in patients with hematologic malignancy. METHODS: Stool specimens were collected from patients admitted for chemotherapy or stem cell transplant in the setting of the evaluation of diarrhea from February 2017 until November 2017. Microbiome characteristics were compared among those exposed to levofloxacin prophylaxis vs those who received BSBL antibiotics. RESULTS: Sixty patients were included, most with acute myeloid leukemia (42%) or multiple myeloma (37%). The gut microbiome of patients with BSBL exposure had significantly reduced Shannon's alpha diversity compared with those without (median [interquartile range {IQR}], 3.28 [1.73 to 3.71] vs 3.73 [3.14 to 4.31]; P = .01). However, those with levofloxacin exposure had increased alpha diversity compared with those without (median [IQR], 3.83 [3.32 to 4.36] vs 3.32 [2.35 to 4.02]; P = .03). Levofloxacin exposure was also associated with a trend toward lower risk of dominance of non-Bacteroidetes genera compared with those without levofloxacin exposure (3 [14%] vs 15 [38%]; P = .051). CONCLUSIONS: The impact of antibiotics on the gut microbiome varies by class, and levofloxacin may disrupt the gut microbiome less than BSBLs in this patient population.

5.
Crit Care Med ; 46(7): 1106-1113, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912095

RESUMO

OBJECTIVES: Sepsis is associated with high early and total in-hospital mortality. Despite recent revisions in the diagnostic criteria for sepsis that sought to improve predictive validity for mortality, it remains difficult to identify patients at greatest risk of death. We compared the utility of nine biomarkers to predict mortality in subjects with clinically suspected bacterial sepsis. DESIGN: Cohort study. SETTING: The medical and surgical ICUs at an academic medical center. SUBJECTS: We enrolled 139 subjects who met two or more systemic inflammatory response syndrome (systemic inflammatory response syndrome) criteria and received new broad-spectrum antibacterial therapy. INTERVENTIONS: We assayed nine biomarkers (α-2 macroglobulin, C-reactive protein, ferritin, fibrinogen, haptoglobin, procalcitonin, serum amyloid A, serum amyloid P, and tissue plasminogen activator) at onset of suspected sepsis and 24, 48, and 72 hours thereafter. We compared biomarkers between groups based on both 14-day and total in-hospital mortality and evaluated the predictive validity of single and paired biomarkers via area under the receiver operating characteristic curve. MEASUREMENTS AND MAIN RESULTS: Fourteen-day mortality was 12.9%, and total in-hospital mortality was 29.5%. Serum amyloid P was significantly lower (4/4 timepoints) and tissue plasminogen activator significantly higher (3/4 timepoints) in the 14-day mortality group, and the same pattern held for total in-hospital mortality (Wilcoxon p ≤ 0.046 for all timepoints). Serum amyloid P and tissue plasminogen activator demonstrated the best individual predictive performance for mortality, and combinations of biomarkers including serum amyloid P and tissue plasminogen activator achieved greater predictive performance (area under the receiver operating characteristic curve > 0.76 for 14-d and 0.74 for total mortality). CONCLUSIONS: Combined biomarkers predict risk for 14-day and total mortality among subjects with suspected sepsis. Serum amyloid P and tissue plasminogen activator demonstrated the best discriminatory ability in this cohort.


Assuntos
Estado Terminal/mortalidade , Sepse/mortalidade , Idoso , Biomarcadores/sangue , Proteína C-Reativa/análise , Estudos de Coortes , Ferritinas/sangue , Fibrinogênio/análise , Haptoglobinas/análise , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Pró-Calcitonina/sangue , Sepse/sangue , Sepse/diagnóstico , Proteína Amiloide A Sérica/análise , Componente Amiloide P Sérico/análise , Ativador de Plasminogênio Tecidual/sangue , alfa-Macroglobulinas/análise
6.
Microbiome ; 4: 7, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26865050

RESUMO

BACKGROUND: Lower respiratory tract infection (LRTI) is a major contributor to respiratory failure requiring intubation and mechanical ventilation. LRTI also occurs during mechanical ventilation, increasing the morbidity and mortality of intubated patients. We sought to understand the dynamics of respiratory tract microbiota following intubation and the relationship between microbial community structure and infection. RESULTS: We enrolled a cohort of 15 subjects with respiratory failure requiring intubation and mechanical ventilation from the medical intensive care unit at an academic medical center. Oropharyngeal (OP) and deep endotracheal (ET) secretions were sampled within 24 h of intubation and every 48-72 h thereafter. Bacterial community profiling was carried out by purifying DNA, PCR amplification of 16S ribosomal RNA (rRNA) gene sequences, deep sequencing, and bioinformatic community analysis. We compared enrolled subjects to a cohort of healthy subjects who had lower respiratory tract sampling by bronchoscopy. In contrast to the diverse upper respiratory tract and lower respiratory tract microbiota found in healthy controls, critically ill subjects had lower initial diversity at both sites. Diversity further diminished over time on the ventilator. In several subjects, the bacterial community was dominated by a single taxon over multiple time points. The clinical diagnosis of LRTI ascertained by chart review correlated with low community diversity and dominance of a single taxon. Dominant taxa matched clinical bacterial cultures where cultures were obtained and positive. In several cases, dominant taxa included bacteria not detected by culture, including Ureaplasma parvum and Enterococcus faecalis. CONCLUSIONS: Longitudinal analysis of respiratory tract microbiota in critically ill patients provides insight into the pathogenesis and diagnosis of LRTI. 16S rRNA gene sequencing of endotracheal aspirate samples holds promise for expanded pathogen identification.


Assuntos
DNA Bacteriano/genética , Intubação Intratraqueal , Microbiota/genética , Pneumonia Associada à Ventilação Mecânica/microbiologia , RNA Ribossômico 16S/genética , Infecções Respiratórias/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Broncoscopia , Estudos de Casos e Controles , Estado Terminal , Feminino , Variação Genética , Humanos , Unidades de Terapia Intensiva , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Orofaringe/microbiologia , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/patologia , Respiração Artificial , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/patologia , Análise de Sequência de RNA , Traqueia/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA